3.501 \(\int \frac{(1+x)^{3/2} (1-x+x^2)^{3/2}}{x^2} \, dx\)

Optimal. Leaf size=323 \[ \frac{9 \sqrt{2} 3^{3/4} (x+1)^{3/2} \sqrt{x^2-x+1} \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right ),-7-4 \sqrt{3}\right )}{7 \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \left (x^3+1\right )}+\frac{9}{7} \sqrt{x+1} \sqrt{x^2-x+1} x^2+\frac{27 \sqrt{x+1} \sqrt{x^2-x+1}}{7 \left (x+\sqrt{3}+1\right )}-\frac{\sqrt{x+1} \sqrt{x^2-x+1} \left (x^3+1\right )}{x}-\frac{27 \sqrt [4]{3} \sqrt{2-\sqrt{3}} (x+1)^{3/2} \sqrt{x^2-x+1} \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} E\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{14 \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \left (x^3+1\right )} \]

[Out]

(9*x^2*Sqrt[1 + x]*Sqrt[1 - x + x^2])/7 + (27*Sqrt[1 + x]*Sqrt[1 - x + x^2])/(7*(1 + Sqrt[3] + x)) - (Sqrt[1 +
 x]*Sqrt[1 - x + x^2]*(1 + x^3))/x - (27*3^(1/4)*Sqrt[2 - Sqrt[3]]*(1 + x)^(3/2)*Sqrt[1 - x + x^2]*Sqrt[(1 - x
 + x^2)/(1 + Sqrt[3] + x)^2]*EllipticE[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(14*Sqrt[
(1 + x)/(1 + Sqrt[3] + x)^2]*(1 + x^3)) + (9*Sqrt[2]*3^(3/4)*(1 + x)^(3/2)*Sqrt[1 - x + x^2]*Sqrt[(1 - x + x^2
)/(1 + Sqrt[3] + x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(7*Sqrt[(1 + x)
/(1 + Sqrt[3] + x)^2]*(1 + x^3))

________________________________________________________________________________________

Rubi [A]  time = 0.111433, antiderivative size = 323, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.261, Rules used = {915, 277, 279, 303, 218, 1877} \[ \frac{9}{7} \sqrt{x+1} \sqrt{x^2-x+1} x^2+\frac{27 \sqrt{x+1} \sqrt{x^2-x+1}}{7 \left (x+\sqrt{3}+1\right )}-\frac{\sqrt{x+1} \sqrt{x^2-x+1} \left (x^3+1\right )}{x}+\frac{9 \sqrt{2} 3^{3/4} (x+1)^{3/2} \sqrt{x^2-x+1} \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{7 \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \left (x^3+1\right )}-\frac{27 \sqrt [4]{3} \sqrt{2-\sqrt{3}} (x+1)^{3/2} \sqrt{x^2-x+1} \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} E\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{14 \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \left (x^3+1\right )} \]

Antiderivative was successfully verified.

[In]

Int[((1 + x)^(3/2)*(1 - x + x^2)^(3/2))/x^2,x]

[Out]

(9*x^2*Sqrt[1 + x]*Sqrt[1 - x + x^2])/7 + (27*Sqrt[1 + x]*Sqrt[1 - x + x^2])/(7*(1 + Sqrt[3] + x)) - (Sqrt[1 +
 x]*Sqrt[1 - x + x^2]*(1 + x^3))/x - (27*3^(1/4)*Sqrt[2 - Sqrt[3]]*(1 + x)^(3/2)*Sqrt[1 - x + x^2]*Sqrt[(1 - x
 + x^2)/(1 + Sqrt[3] + x)^2]*EllipticE[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(14*Sqrt[
(1 + x)/(1 + Sqrt[3] + x)^2]*(1 + x^3)) + (9*Sqrt[2]*3^(3/4)*(1 + x)^(3/2)*Sqrt[1 - x + x^2]*Sqrt[(1 - x + x^2
)/(1 + Sqrt[3] + x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(7*Sqrt[(1 + x)
/(1 + Sqrt[3] + x)^2]*(1 + x^3))

Rule 915

Int[((g_.)*(x_))^(n_)*((d_.) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[((d
 + e*x)^FracPart[p]*(a + b*x + c*x^2)^FracPart[p])/(a*d + c*e*x^3)^FracPart[p], Int[(g*x)^n*(a*d + c*e*x^3)^p,
 x], x] /; FreeQ[{a, b, c, d, e, g, m, n, p}, x] && EqQ[m - p, 0] && EqQ[b*d + a*e, 0] && EqQ[c*d + b*e, 0]

Rule 277

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^p)/(c*(m +
1)), x] - Dist[(b*n*p)/(c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] &&
IGtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1] &&  !ILtQ[(m + n*p + n + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 279

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^p)/(c*(m +
n*p + 1)), x] + Dist[(a*n*p)/(m + n*p + 1), Int[(c*x)^m*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c, m}, x]
&& IGtQ[n, 0] && GtQ[p, 0] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 303

Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Dist[(Sq
rt[2]*s)/(Sqrt[2 + Sqrt[3]]*r), Int[1/Sqrt[a + b*x^3], x], x] + Dist[1/r, Int[((1 - Sqrt[3])*s + r*x)/Sqrt[a +
 b*x^3], x], x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 218

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 + Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3
])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(s*(s + r*x))/((1 + Sqr
t[3])*s + r*x)^2]), x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 1877

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Simplify[((1 - Sqrt[3])*d)/c]]
, s = Denom[Simplify[((1 - Sqrt[3])*d)/c]]}, Simp[(2*d*s^3*Sqrt[a + b*x^3])/(a*r^2*((1 + Sqrt[3])*s + r*x)), x
] - Simp[(3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*Elli
pticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(r^2*Sqrt[a + b*x^3]*Sqrt[(s*(
s + r*x))/((1 + Sqrt[3])*s + r*x)^2]), x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && EqQ[b*c^3 - 2*(5 - 3*Sqrt[3
])*a*d^3, 0]

Rubi steps

\begin{align*} \int \frac{(1+x)^{3/2} \left (1-x+x^2\right )^{3/2}}{x^2} \, dx &=\frac{\left (\sqrt{1+x} \sqrt{1-x+x^2}\right ) \int \frac{\left (1+x^3\right )^{3/2}}{x^2} \, dx}{\sqrt{1+x^3}}\\ &=-\frac{\sqrt{1+x} \sqrt{1-x+x^2} \left (1+x^3\right )}{x}+\frac{\left (9 \sqrt{1+x} \sqrt{1-x+x^2}\right ) \int x \sqrt{1+x^3} \, dx}{2 \sqrt{1+x^3}}\\ &=\frac{9}{7} x^2 \sqrt{1+x} \sqrt{1-x+x^2}-\frac{\sqrt{1+x} \sqrt{1-x+x^2} \left (1+x^3\right )}{x}+\frac{\left (27 \sqrt{1+x} \sqrt{1-x+x^2}\right ) \int \frac{x}{\sqrt{1+x^3}} \, dx}{14 \sqrt{1+x^3}}\\ &=\frac{9}{7} x^2 \sqrt{1+x} \sqrt{1-x+x^2}-\frac{\sqrt{1+x} \sqrt{1-x+x^2} \left (1+x^3\right )}{x}+\frac{\left (27 \sqrt{1+x} \sqrt{1-x+x^2}\right ) \int \frac{1-\sqrt{3}+x}{\sqrt{1+x^3}} \, dx}{14 \sqrt{1+x^3}}+\frac{\left (27 \sqrt{\frac{1}{2} \left (2-\sqrt{3}\right )} \sqrt{1+x} \sqrt{1-x+x^2}\right ) \int \frac{1}{\sqrt{1+x^3}} \, dx}{7 \sqrt{1+x^3}}\\ &=\frac{9}{7} x^2 \sqrt{1+x} \sqrt{1-x+x^2}+\frac{27 \sqrt{1+x} \sqrt{1-x+x^2}}{7 \left (1+\sqrt{3}+x\right )}-\frac{\sqrt{1+x} \sqrt{1-x+x^2} \left (1+x^3\right )}{x}-\frac{27 \sqrt [4]{3} \sqrt{2-\sqrt{3}} (1+x)^{3/2} \sqrt{1-x+x^2} \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}} E\left (\sin ^{-1}\left (\frac{1-\sqrt{3}+x}{1+\sqrt{3}+x}\right )|-7-4 \sqrt{3}\right )}{14 \sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \left (1+x^3\right )}+\frac{9 \sqrt{2} 3^{3/4} (1+x)^{3/2} \sqrt{1-x+x^2} \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac{1-\sqrt{3}+x}{1+\sqrt{3}+x}\right )|-7-4 \sqrt{3}\right )}{7 \sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \left (1+x^3\right )}\\ \end{align*}

Mathematica [C]  time = 0.506683, size = 244, normalized size = 0.76 \[ \frac{\sqrt{x+1} \left (\frac{4 \left (x^2-x+1\right ) \left (2 x^3-7\right )}{x}-\frac{27 \sqrt{2} \sqrt{\frac{2 i x+\sqrt{3}-i}{\sqrt{3}-3 i}} \left (\left (\sqrt{3}-3 i\right ) E\left (i \sinh ^{-1}\left (\sqrt{2} \sqrt{-\frac{i (x+1)}{3 i+\sqrt{3}}}\right )|\frac{3 i+\sqrt{3}}{3 i-\sqrt{3}}\right )-\left (\sqrt{3}-i\right ) \text{EllipticF}\left (i \sinh ^{-1}\left (\sqrt{2} \sqrt{-\frac{i (x+1)}{\sqrt{3}+3 i}}\right ),\frac{\sqrt{3}+3 i}{-\sqrt{3}+3 i}\right )\right )}{\sqrt{-\frac{i (x+1)}{-2 i x+\sqrt{3}+i}}}\right )}{28 \sqrt{x^2-x+1}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[((1 + x)^(3/2)*(1 - x + x^2)^(3/2))/x^2,x]

[Out]

(Sqrt[1 + x]*((4*(1 - x + x^2)*(-7 + 2*x^3))/x - (27*Sqrt[2]*Sqrt[(-I + Sqrt[3] + (2*I)*x)/(-3*I + Sqrt[3])]*(
(-3*I + Sqrt[3])*EllipticE[I*ArcSinh[Sqrt[2]*Sqrt[((-I)*(1 + x))/(3*I + Sqrt[3])]], (3*I + Sqrt[3])/(3*I - Sqr
t[3])] - (-I + Sqrt[3])*EllipticF[I*ArcSinh[Sqrt[2]*Sqrt[((-I)*(1 + x))/(3*I + Sqrt[3])]], (3*I + Sqrt[3])/(3*
I - Sqrt[3])]))/Sqrt[((-I)*(1 + x))/(I + Sqrt[3] - (2*I)*x)]))/(28*Sqrt[1 - x + x^2])

________________________________________________________________________________________

Maple [A]  time = 0.6, size = 368, normalized size = 1.1 \begin{align*}{\frac{1}{14\,x \left ({x}^{3}+1 \right ) }\sqrt{1+x}\sqrt{{x}^{2}-x+1} \left ( 27\,i\sqrt{-2\,{\frac{1+x}{i\sqrt{3}-3}}}\sqrt{{\frac{i\sqrt{3}-2\,x+1}{i\sqrt{3}+3}}}\sqrt{{\frac{2\,x-1+i\sqrt{3}}{i\sqrt{3}-3}}}{\it EllipticF} \left ( \sqrt{-2\,{\frac{1+x}{i\sqrt{3}-3}}},\sqrt{-{\frac{i\sqrt{3}-3}{i\sqrt{3}+3}}} \right ) \sqrt{3}x+4\,{x}^{6}+81\,\sqrt{-2\,{\frac{1+x}{i\sqrt{3}-3}}}\sqrt{{\frac{i\sqrt{3}-2\,x+1}{i\sqrt{3}+3}}}\sqrt{{\frac{2\,x-1+i\sqrt{3}}{i\sqrt{3}-3}}}{\it EllipticF} \left ( \sqrt{-2\,{\frac{1+x}{i\sqrt{3}-3}}},\sqrt{-{\frac{i\sqrt{3}-3}{i\sqrt{3}+3}}} \right ) x-162\,\sqrt{-2\,{\frac{1+x}{i\sqrt{3}-3}}}\sqrt{{\frac{i\sqrt{3}-2\,x+1}{i\sqrt{3}+3}}}\sqrt{{\frac{2\,x-1+i\sqrt{3}}{i\sqrt{3}-3}}}{\it EllipticE} \left ( \sqrt{-2\,{\frac{1+x}{i\sqrt{3}-3}}},\sqrt{-{\frac{i\sqrt{3}-3}{i\sqrt{3}+3}}} \right ) x-10\,{x}^{3}-14 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1+x)^(3/2)*(x^2-x+1)^(3/2)/x^2,x)

[Out]

1/14*(1+x)^(1/2)*(x^2-x+1)^(1/2)*(27*I*(-2*(1+x)/(I*3^(1/2)-3))^(1/2)*((I*3^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2)*
((2*x-1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2)*EllipticF((-2*(1+x)/(I*3^(1/2)-3))^(1/2),(-(I*3^(1/2)-3)/(I*3^(1/2)+3)
)^(1/2))*3^(1/2)*x+4*x^6+81*(-2*(1+x)/(I*3^(1/2)-3))^(1/2)*((I*3^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2)*((2*x-1+I*3
^(1/2))/(I*3^(1/2)-3))^(1/2)*EllipticF((-2*(1+x)/(I*3^(1/2)-3))^(1/2),(-(I*3^(1/2)-3)/(I*3^(1/2)+3))^(1/2))*x-
162*(-2*(1+x)/(I*3^(1/2)-3))^(1/2)*((I*3^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2)*((2*x-1+I*3^(1/2))/(I*3^(1/2)-3))^(
1/2)*EllipticE((-2*(1+x)/(I*3^(1/2)-3))^(1/2),(-(I*3^(1/2)-3)/(I*3^(1/2)+3))^(1/2))*x-10*x^3-14)/x/(x^3+1)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (x^{2} - x + 1\right )}^{\frac{3}{2}}{\left (x + 1\right )}^{\frac{3}{2}}}{x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(3/2)*(x^2-x+1)^(3/2)/x^2,x, algorithm="maxima")

[Out]

integrate((x^2 - x + 1)^(3/2)*(x + 1)^(3/2)/x^2, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (x^{3} + 1\right )} \sqrt{x^{2} - x + 1} \sqrt{x + 1}}{x^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(3/2)*(x^2-x+1)^(3/2)/x^2,x, algorithm="fricas")

[Out]

integral((x^3 + 1)*sqrt(x^2 - x + 1)*sqrt(x + 1)/x^2, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (x + 1\right )^{\frac{3}{2}} \left (x^{2} - x + 1\right )^{\frac{3}{2}}}{x^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)**(3/2)*(x**2-x+1)**(3/2)/x**2,x)

[Out]

Integral((x + 1)**(3/2)*(x**2 - x + 1)**(3/2)/x**2, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (x^{2} - x + 1\right )}^{\frac{3}{2}}{\left (x + 1\right )}^{\frac{3}{2}}}{x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(3/2)*(x^2-x+1)^(3/2)/x^2,x, algorithm="giac")

[Out]

integrate((x^2 - x + 1)^(3/2)*(x + 1)^(3/2)/x^2, x)